
50 September 2002/Vol. 45, No. 9 COMMUNICATIONS OF THE ACM

Contextual computing refers to the enhance-
ment of a user’s interactions by understanding the
user, the context, and the applications and informa-
tion being used, typically across a wide set of user
goals. Contextual computing is not just about model-
ing user preferences and behavior or embedding
computation everywhere, it’s about actively adapting
the computational environment—for each and every
user—at each point of computation.

With respect to personalized search, the contex-
tual computing approach focuses on understanding
the information consumption patterns of each user,
the various information foraging strategies [3] and
applications they employ, and the nature of the
information itself. Focusing on the user enables a
shift from what we call “consensus relevancy” where
the computed relevancy for the entire population is
presumed relevant for each user, toward personal rel-
evancy where relevancy is computed based on each
individual within the context of their interactions.
The benefits of personalized search can be significant,
appreciably decreasing the time it takes people—
novices and experts alike—to find information.

Here, we review the evolution of the field of infor-
mation retrieval (IR) [4], setting the stage for examin-
ing how a search can be personalized, with particular
emphasis on the Web. We then describe the Outride
system, and review a set of experiments.

The field of IR has evolved from analyzing the let-
ters and words that make up the content of docu-

ments to the integration of intrinsic document prop-
erties like citations and hyperlinks to the incorpora-
tion of usage data. Content-based approaches such as
statistical and natural language techniques provide
results that contain a specific set of words or meaning,
but cannot differentiate which documents in a col-
lection are the ones really worth reading.

This need gave rise to a set of methods we refer to
as “author relevancy” techniques. By computing
what the most respected authors deem important,
citation and hyperlink approaches provide an
implicit measure of importance. However, these
techniques can create an authoring bias where the
meaning and resources valued by a group of
authors determine the results for the entire user
population. Imagine for a moment if the Java pro-

gramming language was called something different.
A query for the term “java” on the Web would pro-
duce a different set of results, likely about coffee,
which is probably closer to most users’ expectations.
Additionally, a ranking bias can occur when, for a
given topic, the authoring community values a dif-
ferent set of resources than the general population. A

typical example of this is link promotion where a set
of highly interconnected sites is created by a small set
of authors in an attempt to appear to become the
most relevant resources on a particular topic.

Usage-based IR methods add to the previous
research by leveraging the actions of users to compute
relevancy. A usage rank is computed from the fre-

A contextual computing approach
may prove a breakthrough in
personalized search efficiency.

PERSONALIZEDSEARCH

PE
TE

R
AN

D
 M

AR
IA

 H
O

EY

COMMUNICATIONS OF THE ACM September 2002/Vol. 45, No. 9 51

quency, recency, and/or duration of interaction by
users. This provides a direct measure of what is rele-
vant at any point in time to the users of the informa-
tion system. Typically, the usage rank for a page is
combined with content and link-based ranking meth-
ods. Although impossible to infer from link and con-
tent approaches, usage techniques readily compute
changes in relevancy over time. These temporal
changes include: ephemeral events such as record-
breaking usage driven by interest in the comet Shoe-
maker-Levy; emerging trends such as the growth in
usage of MP3s; seasonal favorites like the popularity
of flowers around Valentine’s Day; and faddish events
such as the rise and fall of the NCSA Mosaic Web
browser.

Interestingly, the retrieval process can be infused
with different granularities of usage data—individual,
group/social, and census—enabling a system to fall-
back to a coarser level of usage data in the face of
uncertainty. The latter forms create a kind of social
relevancy, where the notion of importance is defined
by the usage of a community of users. Very few usage-
based systems have been developed, with the most
notable exception being Direct Hit’s collaborative fil-
tering-inspired approach that monitors which search
results people select.

What’s curious about these approaches is that rele-
vance is measured as a function of the entire popula-
tion of users. One can view this as an attempt to
optimize the consensus relevancy for any given topic.
For any query, relevancy is computed identically for
all users without acknowledging that relevance is rela-

tive for each user. Further, none are able to differenti-
ate based upon who is searching, their current con-
text, interests, and/or prior knowledge. What’s needed
is a way to take into account that different people find
different things relevant and that people’s interests and
knowledge change over time. What’s needed is a way
to compute personal relevancy.

The Outride Approach
We posit that at least two different computational
techniques need to be combined to personalize search:
contextualization and individualization. By contextu-
alization, we mean the interrelated conditions that
occur within an activity. Individualization means the
totality of characteristics that distinguishes an individ-
ual. Contextualization includes factors like the nature
of information available, the information currently
being examined, the applications in use, when, and so
on. Individualization encompasses elements like the
user’s goals, prior and tacit knowledge, past informa-
tion-seeking behaviors, among others. These elements
are used to build a user model to personal relevancy
computationally, as we will describe. It is this focus on
the user and their context within the application of
search that makes personalized search a compelling
area to explore within the framework of contextual
computing.

It is worth mentioning upfront that since the fol-
lowing techniques alter the search experience, careful
integration of these features into the user interface is
required. In particular, the interface needs to provide a
way to explain what the system is doing to personalize

BY JAMES PITKOW, HINRICH SCHÜTZE, TODD CASS, ROB COOLEY, DON TURNBULL,
ANDY EDMONDS, EYTAN ADAR, AND THOMAS BREUEL{ {

THE MAGNITUDE OF THE DIFFERENCE BETWEEN THE OUTRIDE SYSTEM AND THE OTHER ENGINES IS COMPELLING,

ESPEC
IA

LLY
G

IV
EN

T
H

A
T

M
O

ST
SEA

R
C

H
EN

G
IN

ES
A

R
E

LESS
T

H
A

N
10%

 B
ET

T
ER

T
H

A
N

O
N

E
A

N
O

T
H

ER.

the experience as well as to undo the personalization.
The primary ways to personalize a search for an

active searcher are query augmentation and result pro-
cessing. Figure 1 shows the architecture of the Outride
system where the personalization engine sits between a
user interface and an intra/Internet search engine.
Once a user has entered a query, the query can be com-
pared against the contextual information available to

determine if the query can
be refined to include other
terms. For example, if a

user is looking at a series of pages on car information
and searches for “contour,” the system may augment
the query by adding the term “car” or “ford” to provide
the user with results about the Ford Contour car.

In much the same manner, the user model can be
used to perform query augmentation where the simi-
larity between the query term and the user model is
computed. If the query is on a topic the user has previ-
ously seen, the system can reinforce the query with sim-
ilar terms, or suggest results from prior searches. If it is
a new topic, chances are the system should not aug-
ment the query, or if it does, it can help define what the
topic is not about by providing a diverse set of results to
the user. The final output of query augmentation is a
more precise query that can be shown to the user and
submitted to a search engine for processing.

Once the search engine has processed the query, the
results can be individualized. Information can be fil-
tered based upon information in the user’s model
and/or context. For instance, if the model contains
demographic information, the system can point peo-
ple directly to local restaurants and entertainment or
prevent minors from seeing adult content. As with
query augmentation, the user model can re-rank
search results based upon the similarity of the content
of the pages in the results and the user’s profile. With
this, a Java programmer gets information related to
developers while a teacher of programming languages

gets information about Java tutorials and overviews.
Another useful result processing method re-ranks

the results based upon the frequency, recency, or dura-
tion of usage, providing users with the ability to iden-
tify the most popular, faddish, and time-consuming
pages they’ve visited. For example, a feature we call
“Have Seen, Have Not Seen” provides a quick way to
identify new information and return to information

already seen. This enables users to
effectively say, “You know what I
know, show me what I do not
know,” and conversely, “Show me
only what I already know.” If usage
information is aggregated across
multiple profiles, re-ranking can
be done across specific user groups
(“Show me the pages hikers use the
most”) or even the entire popula-
tion (“What’s the coolest page on
the Internet right now?”).

The Outride Personalized
Search System

The Outride system was designed to be a generalized
architecture for the personalization of search across a
variety of information ecologies. Figure 2 shows the
Outride client integrated into the sidebar of Internet
Explorer as a 64KB component. As part of the
browser, the component supports direct manipulation
and has access to all user interactions.

The sidebar is partitioned into four separate infor-
mation spaces via a tabbed interface: a personal hierar-

chy of each user’s links
(Personal), a catalog of links
(Directory), the user’s surf his-
tory (History), and search results

52 September 2002/Vol. 45, No. 9 COMMUNICATIONS OF THE ACM

Figure 1. Outride system
architecture.

Figure 2. Outride
client integrated into

Internet Explorer
sidebar.

from the entire Web (Web). The partitioning was
designed to directly support the conceptual model and
tasks people utilize in searching the Web. Two com-
plementary modes—browse and search—are sup-
ported for each information space. The scope of
activities defined by the current mode is limited by the

information space; for example, users can limit a
search to their personal links, their surf history, or the
Directory.

User models are computed from the content in
these information spaces in the Outride sidebar. The
models are based upon the ontology of the Open
Directory Project (ODP) where each user has their
own weighting across the top 1,000 categories of the
ODP. Upon download of the sidebar component, if
the user imports a set of favorite links, the system
fetches the pages and classifies them into the ODP
adjusting the weights accordingly. If no links are
imported, the user starts out with no content
weighting. As the user clicks around the Web each
click is captured by the sidebar, classified, and the
user model is updated accordingly. The last 1,000
unique clicks of each user are stored in their surf
history.

Query augmentation is performed by integrating
various clues provided by the instrumentation of the
interface and user models. If a user is browsing the
ODP, the category name and its contents are com-
pared to the query to see if they are similar. Likewise,
the title and contents of the currently viewed Web
page is checked. Our initial investigations found that
while these cues provide meaningful data, comparing
the query to the users’ content profile using vector
methods provide better results. Only queries exceeding
certain similarity thresholds are augmented automati-
cally by the system.

Result set processing is performed across an
expanded set of results, typically 1,000, from the back-
end search engine. Filtering by “Have Seen, Have Not
Seen,” and usage-based re-ranking are straightforward
to implement. To re-rank search results based upon the
user profile, the titles and other metadata from the
pages are compared via vector methods against the user
profile. Although far from optimal, if we were to re-
rank results based upon the context of each result page
it would require indexing the entire Web—an option
we felt better handled via a partnership.

We found the combination of query augmentation
and result processing with a contextually designed
interface to be quite effective in making search easier
and faster.

Testing Methodology and Results
Outride, with eTesting Labs as an independent tester,
designed a series of empirical tests to measure if the
Outride system makes searches faster and easier to
complete. Instead of measuring precision and recall,
the elapsed time to successfully complete a search and

the number of interface actions (mouse clicks or key-
board entries such as entering a search term) were used
as metrics. While not true for all search tasks, we
believe these metrics more accurately reflect how peo-
ple generally search for information on the Web: They
stop once sufficient information is identified. More-
over, time and actions directly measure the real costs
incurred by users in finding information.

Creating a representative set of search tasks and top-
ics with which to measure search systems is not a solved
problem. The topics and tasks used in the study were
developed in tandem with eTesting Labs and were based
on our mutual prior experiences in studying Web search
behaviors through questionnaires, lab studies, client
monitoring, and proxy log analysis. It must be noted
that several tasks measure functionality provided by
Outride but not the other search engines. The search
activities of Web searching; searching for a previously
accessed Web page; searching for a page not accessed
before; and searching through a set of preferred pages
were performed across the topics of football, car shop-
ping, and travel planning. Each participant performed
12 search tasks with a particular search engine and with
Outride, alternating tasks between each system.

In order to have consistency throughout the tests, a
default user model was used for all participants. The
profile included a set of contextually related preferred
links and a surfing history related to the search tasks.
Due to testing limitations, however, the profile could
not be based on each participant’s actual prior Web
use. The contents of the profile were briefly
overviewed to the participants to illustrate the person-
alized aspects of the system.

Some 48 novice (less than 8 hours per week of
Internet usage) and experienced (over 8 hours per
week of Internet usage) Web users were introduced to
Outride and one of the following search engines: AOL
Search, Excite, Google, and Yahoo. Google was used as
the underlying search engine by the Outride system.
The one-hour test was administered by a trained eTest-
ing proctor and consisted of an introduction, a tutor-
ial, a review, and the 12 search tasks. Each search task
was limited to three minutes.

Figure 3 shows that participants found the answers
more quickly with Outride than with any other

COMMUNICATIONS OF THE ACM September 2002/Vol. 45, No. 9 53

WHAT’S NEEDED IS A WAY TO TAKE INTO ACCOUNT THAT DIFFERENT PEOPLE FIND DIFFERENT THINGS RELEVANT A
N

D
T

H
A

T
PEO

PLE’S
IN

T
ER

EST
S

A
N

D
K

N
O

W
LED

G
E

C
H

A
N

G
E

O
V

ER
T

IM
E.

engine. On average, participants took 39 seconds to
complete the tasks using Outride compared to 75 sec-
onds using Google. As shown in Table 1, participants
needed fewer actions when using Outride, completing
tasks in 11 user actions compared to 21 user actions
using the next fastest engine.

Table 2 shows that novice and experts were able to
successfully find information the fastest with Outride.

Novice Outride users were
able to complete tasks in 45
seconds, compared to 76 sec-

onds using Yahoo. Expert users
were even faster, requiring 33
seconds using Outride, and 73

seconds using Google. Interestingly, novices using
Outride were faster than experts using other engines.
Paradoxically, for AOL and Yahoo, novice users were
faster than expert users.

While the results may seem overwhelmingly in
favor of Outride, there are some issues to interpret.
First, some of the scenarios contained tasks directly
supported by the functionality provided by the Out-
ride system, creating an advantage against the other
search engines. Indeed, Outride features are specifi-
cally designed to understand users, provide support
by the conceptual model and tasks users employ to
search the Web, and to contextualize the application
of search. This is the goal of contextual computing
and why personalizing search makes sense.

Second, while the use of default profiles could have
provided an advantage for Outride, it also could have

negatively influenced the outcome, as the profile did
not represent the test participants’ actual surfing pat-
terns, nor were the participants intimately familiar
with the content of the profiles. Third, some of the
gains are likely due to the user interface since the Out-
ride sidebar remains visible to users across all interac-
tions, helping to preserve context and provide quick
access to core search features. For example, while
search engines require users to
navigate back and forth
between the list of search

results and specific Web pages,
Outride preserves context by
keeping the search results open in the sidebar of the
Web browser, making the contents of each search
result accessible to the user with a single click.

Still, the magnitude of the difference between the
Outride system and the other engines is compelling,
especially given that most search engines are less than
10% better than one another [2].

Future Directions
Personalized search opens the door to a new set of
challenges and opportunities. One difficult problem
is modeling a user’s changing interests over time.
Although power laws of recency and frequency have
been shown to sufficiently model human memory
[1] and can be applied to information consumption
behaviors, there will always be times when excep-
tions arise. Carefully designed interfaces can help
alleviate inaccurate personalization and allow users

54 September 2002/Vol. 45, No. 9 COMMUNICATIONS OF THE ACM

Search Engine User Actions Difference (%)

Outride
Google
Yahoo!
AOL
Excite

Average

11.2
21.2
22.4
23.1
23.3

22.5

89.6
100.5
107.0
108.5

101.4
Source: ZDLabs/eTesting, Inc. Oct. 2000

(Average time to complete task)
Source: ZDLabs/eTesting, Inc. Oct. 2000

0
10
20
30

40
50

60
70
80
90

100
Others91.30

Novice

T
im

e
(S

ec
on

ds
)

User Skill Level
Experts

45.07

75.70

32.83

Outride

Engine Expert
Time

Rank Novice
Time

Rank Average Rank %
Difference

Outride
AOL
Excite
Google
Yahoo!

32.8
92.3
75.7
72.5
85.1

(1)
(5)
(3)
(2)
(4)

45.1
87.0
91.3
78.4
76.9

(1)
(4)
(5)
(3)
(2)

38.9
89.6
83.5
75.4
81.0

0%
130.2%
114.5%
93.7%
107.9%

(1)
(5)
(4)
(2)
(3)

(in seconds, with placement in parenthesis)
Source: ZDLabs/eTesting, Inc. Oct. 2000

Table 1. Results of user
actions’ study.

Table 2. Overall timing
results.

Figure 4. Novices
versus experts.

Figure 3. How long to
get an answer?

(% slower from Outride enabled search)
Source: ZDLabs/eTesting, Inc. Oct. 2000

Outride

Google

Yahoo!

Excite

AOL

93.7% slower

38.9

75.4

81

83.5

89.6

107.9% slower

114.5% slower

130.2% slower

0 10 20 30 40 50 60 70 80 90 100

Search
Engine

Average Task Completion Time in Seconds

to control the extent of the personalization.
Additionally, much of the success of query augmen-

tation rests in correctly detecting user context switches,
which is not an easy task. While not optimal, incorrect
estimation can be mitigated by enabling the user to
readily undo the personalization.

Privacy issues are plentiful in systems that store
models based upon user’s interactions with informa-
tion, mandating that users be able to inspect and mod-
ify their models. One side effect of Outride modeling
interests based upon the ODP and having the ODP be
browsable in the client is that users can turn portions
of their model on and off with a single click as they
navigate their folders of the ODP hierarchy.

Finally, one of the benefits of consensus search is
that all users get the same results, which fosters result
sharing and the use of search results for navigation—
an issue that can also be addressed at the interface level.

Conclusion
We have presented here a new type of IR system that
personalizes the search experience for each user across
their interactions. We have shown initial evidence to
support our firm conviction that the contextualized
computing approach toward the personalization of

search is the next frontier toward significantly increas-
ing search efficiency.

References
1. Anderson, J.R. Cognitive Psychology and Its Implications. Freeman, San Fran-

cisco, CA, 1980.
2. eTesting Labs. Google Web Search Engine Evaluation;

www.etestinglabs.com/main/reports/google.asp
3. Pirolli, P. and Card, S.K. Psychological Review 106, 4 (1999), 643–675.
4. Salton, G. and McGill, M.J. Introduction to Modern Information Retrieval.

McGraw-Hill, New York, 1983.

James Pitkow (pitkow@parc.com), PARC, Inc., Palo Alto, CA.
Hinrich Schütze, Novation Biosciences, CA.
Todd Cass, Intelligent Markets, Inc., San Francisco, CA.
Rob Cooley, KXEN, Inc. San Francisco, CA.
Don Turnbull, University of Texas, Austin.
Andy Edmonds, Vivendi, Encino, CA.
Eytan Adar, Hewlett-Packard Laboratories, Palo Alto, CA.
Thomas Breuel, PARC, Inc., Palo Alto, CA.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

© 2002 ACM 0002-0782/02/0900 $5.00

c

COMMUNICATIONS OF THE ACM September 2002/Vol. 45, No. 9 55

